博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Tensorflow做阅读理解与完形填空
阅读量:5167 次
发布时间:2019-06-13

本文共 22002 字,大约阅读时间需要 73 分钟。

catalogue

0. 前言1. 使用的数据集2. 数据预处理3. 训练4. 测试模型运行结果: 进行实际完形填空

 

0. 前言

开始写这篇文章的时候是晚上12点,突然想到几点新的理解,赶紧记下来。我们用深度学习(例如tensorflow)的时候,一定要着重训练自己的建模和抽象能力,即把一个复杂的业务问题抽象为一个数学模型问题。从本质上说,阅读理解做完形填空和人机对话AI是一样的,所不同的地方在于,前者的输入一段长对话,且是带有上下文的长对话,而输出可能是一段短语,这要求神经网络需要训练出一个"长对话问题-短语回答"的最佳模型

Relevant Link:

http://blog.topspeedsnail.com/archives/11062http://blog.topspeedsnail.com/archives/11062http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html

 

1. 使用的数据集

对于深度学习来说,训练集的覆盖度很重要,tensorflow的RGD随机递归下降会不断调整参数,直到尝试出一组最优地的参数去拟合我们的输入训练集,为了辅助tensorflow的loss函数找到最优解,我们把训练集分成2部分,一半用于RGD训练参数,另一半用于随时验证当前参数结果(数学上即loss函数获得最小值)

0x1: Children’s Book Test

Data is in the included "data" folder. Questions are separated according to whether the missing word is a named entity (NE), common noun (CN), verb (V) or preposition (P)

cbtest_NE_train.txt : 67128 questionscbtest_NE_valid_2000ex.txt : 2000cbtest_NE_test_2500ex.txt : 2500cbtest_CN_train.txt : 121176 questionscbtest_CN_valid_2000ex.txt : 2000cbtest_CN_test_2500ex.txt : 2500cbtest_V_train.txt : 109111 questionscbtest_V_valid_2000ex.txt : 2000cbtest_V_test_2500ex.txt : 2500cbtest_P_train.txt : 67128 questionscbtest_P_valid_2000ex.txt : 2000cbtest_P_test_2500ex.txt : 2500

0x2: CBT questions

Questions are built from sets of 21 consecutive sentences from the books. A sentence is defined by the Stanford Core NLP sentence splitter.

A Named Entity (NE) is any entity identified by the Stanford Core NLP NER system. A Common Noun (CN) is any word tagged as a noun by the Stanford Core NLP POS tagger that is not already a NE. Verbs and Prepositions are identified similarly.

训练语料集的组成是每20个阅读上下文,对应一个问题,然后给出一个备选答案的集合,这个集合中的任何一个都有可能成为正确的答案,它是一个开放式的问题回答

Relevant Link:

https://research.fb.com/projects/babi/http://cs.nyu.edu/~kcho/DMQA/

 

2. 数据预处理

0x1: 把句子token化、把训练集转化为20条语境上下文+1条问题+一段备选答案

def preprocess_data(data_file, out_file):    # stories[x][0]  tories[x][1]  tories[x][2]    stories = []    with open(data_file) as f:        story = []        for line in f:            line = line.strip()            if not line:                story = []            else:                _, line = line.split(' ', 1)                if line:                    if '\t' in line:                        q, a, _, answers = line.split('\t')                        # tokenize                        q = [s.strip() for s in re.split('(\W+)+', q) if s.strip()]                        stories.append((story, q, a))                    else:                        line = [s.strip() for s in re.split('(\W+)+', line) if s.strip()]                        story.append(line)                    # print stories    #print stories    samples = []    for story in stories:        story_tmp = []        content = []        for c in story[0]:            content += c        story_tmp.append(content)        story_tmp.append(story[1])        story_tmp.append(story[2])        samples.append(story_tmp)    #print samples    # 把每一段阅读与完形填空片段顺序打乱    random.shuffle(samples)    print(len(samples))    with open(out_file, "w") as f:        for sample in samples:            f.write(str(sample))            f.write('\n')

0x2: 根据训练语料集生成词表

这里遵循的依然是word2vec词向量空间模型,我们假定训练集中的[上下文20,问题1,回答]之间都是存在关联关系的,类似马尔柯夫链中的关联预测性思想,即出现了A词汇,则A->B出现的概率是所有其他组合中最高的,对单词短语来说,词向量就相当于图像识别中的图像区域权重

# generate word vocabulary tabledef read_data(data_file):    stories = []    with open(data_file) as f:        for line in f:            line = ast.literal_eval(line.strip())            stories.append(line)    return stories# generate word vocabulary tablestories = read_data(train_data_token_file) + read_data(valid_data_token_file)content_length = max([len(s) for s, _, _ in stories])question_length = max([len(q) for _, q, _ in stories])print(content_length, question_length)vocab = sorted(set(itertools.chain(*(story + q + [answer] for story, q, answer in stories))))vocab_size = len(vocab) + 1print(vocab_size)word2idx = dict((w, i + 1) for i, w in enumerate(vocab))pickle.dump((word2idx, content_length, question_length, vocab_size), open(train_vocab_data_file, "wb"))

通过将词汇进行index编码,将词汇序列转化为数字序列,从而为后续计算向量最短距离作准备

0x3: 数据向量表示

将[[上下文20,问题1,回答]] list(很多段对话)纵向抽取,根据词汇表的index编号,转化为行矩阵形式,X(语境对话)、Q(问题)、A(回答),矩阵中的每个元素都是一个index编号,代表了该字母在"向量词汇表(该词汇表中的词汇之间具备向量特征)"的索引编号

# From keras, paddingdef pad_sequences(sequences, maxlen=None, dtype='int32',                  padding='post', truncating='post', value=0.):    lengths = [len(s) for s in sequences]    nb_samples = len(sequences)    if maxlen is None:        maxlen = np.max(lengths)    # take the sample shape from the first non empty sequence    # checking for consistency in the main loop below.    sample_shape = tuple()    for s in sequences:        if len(s) > 0:            sample_shape = np.asarray(s).shape[1:]            break    x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)    for idx, s in enumerate(sequences):        if len(s) == 0:            continue  # empty list was found        if truncating == 'pre':            trunc = s[-maxlen:]        elif truncating == 'post':            trunc = s[:maxlen]        else:            raise ValueError('Truncating type "%s" not understood' % truncating)        # check `trunc` has expected shape        trunc = np.asarray(trunc, dtype=dtype)        if trunc.shape[1:] != sample_shape:            raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %                             (trunc.shape[1:], idx, sample_shape))        if padding == 'post':            x[idx, :len(trunc)] = trunc        elif padding == 'pre':            x[idx, -len(trunc):] = trunc        else:            raise ValueError('Padding type "%s" not understood' % padding)    return x# conver to vectordef to_vector(data_file, output_file):    word2idx, content_length, question_length, _ = pickle.load(open(train_vocab_data_file, "rb"))    X = []    Q = []    A = []    with open(data_file) as f_i:        for line in f_i:            line = ast.literal_eval(line.strip())            x = [word2idx[w] for w in line[0]]            q = [word2idx[w] for w in line[1]]            a = [word2idx[line[2]]]            X.append(x)            Q.append(q)            A.append(a)    X = pad_sequences(X, content_length)    Q = pad_sequences(Q, question_length)    with open(output_file, "w") as f_o:        for i in range(len(X)):            f_o.write(str([X[i].tolist(), Q[i].tolist(), A[i]]))            f_o.write('\n')

 

0x4: code

# -*- coding:utf-8 -*-import reimport randomimport astimport itertoolsimport pickleimport numpy as nptrain_data_file = './CBTest/data/cbtest_NE_train.txt'train_data_token_file = 'train.data'valid_data_file = './CBTest/data/cbtest_NE_valid_2000ex.txt'valid_data_token_file = 'valid.data'train_vocab_data_file = 'vocab.data'train_vec_data_file = 'train.vec'valid_vec_data_file = 'valid.vec'def preprocess_data(data_file, out_file):    # stories[x][0]  tories[x][1]  tories[x][2]    stories = []    with open(data_file) as f:        story = []        for line in f:            line = line.strip()            if not line:                story = []            else:                _, line = line.split(' ', 1)                if line:                    if '\t' in line:                        q, a, _, answers = line.split('\t')                        # tokenize                        q = [s.strip() for s in re.split('(\W+)+', q) if s.strip()]                        stories.append((story, q, a))                    else:                        line = [s.strip() for s in re.split('(\W+)+', line) if s.strip()]                        story.append(line)                    # print stories    #print stories    samples = []    for story in stories:        story_tmp = []        content = []        for c in story[0]:            content += c        story_tmp.append(content)        story_tmp.append(story[1])        story_tmp.append(story[2])        samples.append(story_tmp)    #print samples    # 把每一段阅读与完形填空片段顺序打乱    random.shuffle(samples)    print(len(samples))    with open(out_file, "w") as f:        for sample in samples:            f.write(str(sample))            f.write('\n')# generate word vocabulary tabledef read_data(data_file):    stories = []    with open(data_file) as f:        for line in f:            line = ast.literal_eval(line.strip())            stories.append(line)    return stories# From keras, paddingdef pad_sequences(sequences, maxlen=None, dtype='int32',                  padding='post', truncating='post', value=0.):    lengths = [len(s) for s in sequences]    nb_samples = len(sequences)    if maxlen is None:        maxlen = np.max(lengths)    # take the sample shape from the first non empty sequence    # checking for consistency in the main loop below.    sample_shape = tuple()    for s in sequences:        if len(s) > 0:            sample_shape = np.asarray(s).shape[1:]            break    x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype)    for idx, s in enumerate(sequences):        if len(s) == 0:            continue  # empty list was found        if truncating == 'pre':            trunc = s[-maxlen:]        elif truncating == 'post':            trunc = s[:maxlen]        else:            raise ValueError('Truncating type "%s" not understood' % truncating)        # check `trunc` has expected shape        trunc = np.asarray(trunc, dtype=dtype)        if trunc.shape[1:] != sample_shape:            raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %                             (trunc.shape[1:], idx, sample_shape))        if padding == 'post':            x[idx, :len(trunc)] = trunc        elif padding == 'pre':            x[idx, -len(trunc):] = trunc        else:            raise ValueError('Padding type "%s" not understood' % padding)    return x# conver to vectordef to_vector(data_file, output_file):    word2idx, content_length, question_length, _ = pickle.load(open(train_vocab_data_file, "rb"))    X = []    Q = []    A = []    with open(data_file) as f_i:        for line in f_i:            line = ast.literal_eval(line.strip())            x = [word2idx[w] for w in line[0]]            q = [word2idx[w] for w in line[1]]            a = [word2idx[line[2]]]            X.append(x)            Q.append(q)            A.append(a)    X = pad_sequences(X, content_length)    Q = pad_sequences(Q, question_length)    with open(output_file, "w") as f_o:        for i in range(len(X)):            f_o.write(str([X[i].tolist(), Q[i].tolist(), A[i]]))            f_o.write('\n')if __name__ == "__main__":    preprocess_data(train_data_file, train_data_token_file)    preprocess_data(valid_data_file, valid_data_token_file)    # generate word vocabulary table    stories = read_data(train_data_token_file) + read_data(valid_data_token_file)    content_length = max([len(s) for s, _, _ in stories])    question_length = max([len(q) for _, q, _ in stories])    print(content_length, question_length)    vocab = sorted(set(itertools.chain(*(story + q + [answer] for story, q, answer in stories))))    vocab_size = len(vocab) + 1    print(vocab_size)    word2idx = dict((w, i + 1) for i, w in enumerate(vocab))    pickle.dump((word2idx, content_length, question_length, vocab_size), open(train_vocab_data_file, "wb"))    to_vector(train_data_token_file, train_vec_data_file)    to_vector(valid_data_token_file, valid_vec_data_file)

Relevant Link: 

 

3. 训练

0x1: Word Embeddings

向量空间模型 (VSMs)将词汇表达(嵌套)于一个连续的向量空间中,语义近似的词汇被映射为相邻的数据点。向量空间模型在自然语言处理领域中有着漫长且丰富的历史,不过几乎所有利用这一模型的方法都依赖于 分布式假设,其核心思想为出现于上下文情景中的词汇都有相类似的语义。采用这一假设的研究方法大致分为以下两类:基于计数的方法 (e.g. 潜在语义分析), 和 预测方法 (e.g. 神经概率化语言模型).

0x2: 定义损失函数

loss = -tf.reduce_mean(        tf.log(tf.reduce_sum(tf.to_float(tf.equal(tf.expand_dims(A, -1), X)) * X_attentions, 1) + tf.constant(0.00001)))

对于训练过程来说,模型根据X上下文语境得到的answer应该和验证机中的打标结果一致的(这和图像识别只有一个正确答案的道理是一样的)

0x3: 优化器

这里使用Adam算法的Optimizer不断训练我们的输入参数

optimizer = tf.train.AdamOptimizer(learning_rate=0.001)    grads_and_vars = optimizer.compute_gradients(loss)    capped_grads_and_vars = [(tf.clip_by_norm(g, 5), v) for g, v in grads_and_vars]    train_op = optimizer.apply_gradients(capped_grads_and_vars)

Tensorflow的优化器使用十分简便,已经进行了大量高层封装,我们只要实例化相应class,传入指定参数执行即可

0x4: Dropout

为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。

keep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

0x5: code

# -*- coding: utf-8 -*-import tensorflow as tfimport pickleimport numpy as npimport astfrom collections import defaultdicttrain_vec_data_file = 'train.vec'valid_vec_data_file = 'valid.vec'train_vocab_data_file = 'vocab.data'def get_next_batch():    X = []    Q = []    A = []    for i in range(batch_size):        for line in train_file:            line = ast.literal_eval(line.strip())            X.append(line[0])            Q.append(line[1])            A.append(line[2][0])            break    if len(X) == batch_size:        return X, Q, A    else:        train_file.seek(0)        return get_next_batch()def get_test_batch():    with open(valid_vec_data_file) as f:        X = []        Q = []        A = []        for line in f:            line = ast.literal_eval(line.strip())            X.append(line[0])            Q.append(line[1])            A.append(line[2][0])        return X, Q, Adef glimpse(weights, bias, encodings, inputs):    weights = tf.nn.dropout(weights, keep_prob)    inputs = tf.nn.dropout(inputs, keep_prob)    attention = tf.transpose(tf.matmul(weights, tf.transpose(inputs)) + bias)    attention = tf.batch_matmul(encodings, tf.expand_dims(attention, -1))    attention = tf.nn.softmax(tf.squeeze(attention, -1))    return attention, tf.reduce_sum(tf.expand_dims(attention, -1) * encodings, 1)def neural_attention(embedding_dim=384, encoding_dim=128):    embeddings = tf.Variable(tf.random_normal([vocab_size, embedding_dim], stddev=0.22), dtype=tf.float32)    tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-4), [embeddings])    with tf.variable_scope('encode'):        with tf.variable_scope('X'):            X_lens = tf.reduce_sum(tf.sign(tf.abs(X)), 1)            embedded_X = tf.nn.embedding_lookup(embeddings, X)            encoded_X = tf.nn.dropout(embedded_X, keep_prob)            gru_cell = tf.nn.rnn_cell.GRUCell(encoding_dim)            outputs, output_states = tf.nn.bidirectional_dynamic_rnn(gru_cell, gru_cell, encoded_X,                                                                     sequence_length=X_lens, dtype=tf.float32,                                                                     swap_memory=True)            encoded_X = tf.concat(2, outputs)        with tf.variable_scope('Q'):            Q_lens = tf.reduce_sum(tf.sign(tf.abs(Q)), 1)            embedded_Q = tf.nn.embedding_lookup(embeddings, Q)            encoded_Q = tf.nn.dropout(embedded_Q, keep_prob)            gru_cell = tf.nn.rnn_cell.GRUCell(encoding_dim)            outputs, output_states = tf.nn.bidirectional_dynamic_rnn(gru_cell, gru_cell, encoded_Q,                                                                     sequence_length=Q_lens, dtype=tf.float32,                                                                     swap_memory=True)            encoded_Q = tf.concat(2, outputs)    W_q = tf.Variable(tf.random_normal([2 * encoding_dim, 4 * encoding_dim], stddev=0.22), dtype=tf.float32)    b_q = tf.Variable(tf.random_normal([2 * encoding_dim, 1], stddev=0.22), dtype=tf.float32)    W_d = tf.Variable(tf.random_normal([2 * encoding_dim, 6 * encoding_dim], stddev=0.22), dtype=tf.float32)    b_d = tf.Variable(tf.random_normal([2 * encoding_dim, 1], stddev=0.22), dtype=tf.float32)    g_q = tf.Variable(tf.random_normal([10 * encoding_dim, 2 * encoding_dim], stddev=0.22), dtype=tf.float32)    g_d = tf.Variable(tf.random_normal([10 * encoding_dim, 2 * encoding_dim], stddev=0.22), dtype=tf.float32)    with tf.variable_scope('attend') as scope:        infer_gru = tf.nn.rnn_cell.GRUCell(4 * encoding_dim)        infer_state = infer_gru.zero_state(batch_size, tf.float32)        for iter_step in range(8):            if iter_step > 0:                scope.reuse_variables()            _, q_glimpse = glimpse(W_q, b_q, encoded_Q, infer_state)            d_attention, d_glimpse = glimpse(W_d, b_d, encoded_X, tf.concat_v2([infer_state, q_glimpse], 1))            gate_concat = tf.concat_v2([infer_state, q_glimpse, d_glimpse, q_glimpse * d_glimpse], 1)            r_d = tf.sigmoid(tf.matmul(gate_concat, g_d))            r_d = tf.nn.dropout(r_d, keep_prob)            r_q = tf.sigmoid(tf.matmul(gate_concat, g_q))            r_q = tf.nn.dropout(r_q, keep_prob)            combined_gated_glimpse = tf.concat_v2([r_q * q_glimpse, r_d * d_glimpse], 1)            _, infer_state = infer_gru(combined_gated_glimpse, infer_state)    return tf.to_float(tf.sign(tf.abs(X))) * d_attentiondef train_neural_attention():    X_attentions = neural_attention()    loss = -tf.reduce_mean(        tf.log(tf.reduce_sum(tf.to_float(tf.equal(tf.expand_dims(A, -1), X)) * X_attentions, 1) + tf.constant(0.00001)))    optimizer = tf.train.AdamOptimizer(learning_rate=0.001)    grads_and_vars = optimizer.compute_gradients(loss)    capped_grads_and_vars = [(tf.clip_by_norm(g, 5), v) for g, v in grads_and_vars]    train_op = optimizer.apply_gradients(capped_grads_and_vars)    saver = tf.train.Saver()    with tf.Session() as sess:        sess.run(tf.global_variables_initializer())        # writer = tf.summary.FileWriter()        # 恢复前一次训练        ckpt = tf.train.get_checkpoint_state('.')        if ckpt != None:            print(ckpt.model_checkpoint_path)            saver.restore(sess, ckpt.model_checkpoint_path)        else:            print("checkpoint not found!!")        for step in range(20000):            train_x, train_q, train_a = get_next_batch()            loss_, _ = sess.run([loss, train_op], feed_dict={X: train_x, Q: train_q, A: train_a, keep_prob: 0.7})            print(loss_)            # 保存模型并计算准确率            if step % 1000 == 0:                path = saver.save(sess, 'machine_reading.model', global_step=step)                print(path)                test_x, test_q, test_a = get_test_batch()                test_x, test_q, test_a = np.array(test_x[:batch_size]), np.array(test_q[:batch_size]), np.array(                    test_a[:batch_size])                attentions = sess.run(X_attentions, feed_dict={X: test_x, Q: test_q, keep_prob: 1.})                correct_count = 0                for x in range(test_x.shape[0]):                    probs = defaultdict(int)                    for idx, word in enumerate(test_x[x, :]):                        probs[word] += attentions[x, idx]                    guess = max(probs, key=probs.get)                    if guess == test_a[x]:                        correct_count += 1                print(correct_count / test_x.shape[0])# 读取词汇表word2idx, content_length, question_length, vocab_size = pickle.load(open(train_vocab_data_file, "rb"))print(content_length, question_length, vocab_size)#print word2idxbatch_size = 64train_file = open(train_vec_data_file)X = tf.placeholder(tf.int32, [batch_size, content_length])  # 洋文材料Q = tf.placeholder(tf.int32, [batch_size, question_length])  # 问题A = tf.placeholder(tf.int32, [batch_size])  # 答案# drop outkeep_prob = tf.placeholder(tf.float32)train_neural_attention()

Relevant Link:

http://docs.pythontab.com/tensorflow/tutorials/word2vec/http://blog.csdn.net/lenbow/article/details/52218551http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/basic_usage.htmlhttp://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.htmlhttp://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/variable_scope.htmlhttp://www.jianshu.com/p/45dbfe5809d4https://www.zhihu.com/question/51325408http://www.jianshu.com/p/c9f66bc8f96c

 

4. 测试模型运行结果: 进行实际完形填空

验证模型的过程就是让cnn根据和train相同的输入格式,得到一个预测概率最大的输出结果

0x1: 测试题目

We did manage to get the taffy made but before we could sample the result satisfactorily , and just as the girls were finishing with the washing of the dishes , Felicity glanced out of the window and exclaimed in tones of dismay , `` Oh , dear me , here ' s Great - aunt Eliza coming up the lane ! Now , is n ' t that too mean ? '' We all looked out to see a tall , gray - haired lady approaching the house , looking about her with the slightly puzzled air of a stranger . We had been expecting Great - aunt Eliza ' s advent for some weeks , for she was visiting relatives in Markdale . We knew she was liable to pounce down on us any time , being one of those delightful folk who like to `` surprise '' people , but we had never thought of her coming that particular day . It must be confessed that we did not look forward to her visit with any pleasure . None of us had ever seen her , but we knew she was very deaf , and had very decided opinions as to the way in which children should behave . `` Whew ! '' whistled Dan . `` We ' re in for a jolly afternoon . She ' s deaf as a post and we ' ll have to split our throats to make her hear at all . I ' ve a notion to skin out . '' `` Oh , do n ' t talk like that , Dan , '' said Cecily reproachfully . `` She ' s old and lonely and has had a great deal of trouble . She has buried three husbands . We must be kind to her and do the best we can to make her visit pleasant . '' `` She ' s coming to the back door , '' said Felicity , with an agitated glance around the kitchen . `` I told you , Dan , that you should have shovelled the snow away from the front door this morning . Cecily , set those pots in the pantry quick -- hide those boots , Felix -- shut the cupboard door , Peter -- Sara , straighten up the lounge . She ' s awfully particular and ma says her house is always as neat as wax . ''

模型会按照同样的训练过程将测试数据输入模型,得到最大概率对应的index号,即模型预测的完形填空答案

Relevant Link:

Copyright (c) 2017 LittleHann All rights reserved

转载于:https://www.cnblogs.com/LittleHann/p/6429561.html

你可能感兴趣的文章
九度0J 1374 所有员工年龄排序
查看>>
微信小程序图片使用示例
查看>>
Ubuntu16.04+cuda8.0rc+opencv3.1.0+caffe+Theano+torch7搭建教程
查看>>
1.开发准备
查看>>
centos su命令
查看>>
CLR:基元类型、引用类型和值类型
查看>>
dubbo序列化hibernate.LazyInitializationException could not initialize proxy - no Session懒加载异常的解决...
查看>>
jQuery中的事件绑定的几种方式
查看>>
泥塑课
查看>>
iOS 自定义的对象类型的解档和归档
查看>>
setImageBitmap和setImageResource
查看>>
springMVC4 注解配置实例
查看>>
单片机编程
查看>>
Filter in Servlet
查看>>
Linux--SquashFS
查看>>
Application Pool Identities
查看>>
2017-3-24 开通博客园
查看>>
【MySQL性能优化】MySQL常见SQL错误用法
查看>>
Vue2全家桶之一:vue-cli(vue脚手架)超详细教程
查看>>
Struts 2 常用技术
查看>>